首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
化学   3篇
物理学   3篇
  2018年   1篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  1994年   1篇
  1992年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
2.
This is a correction to the following paper: Hague T, Petroczi A, Andrews PR, Barker J, Naughton DP: Determination of metal ion content of beverages and estimation of target hazard quotients: a comparative study. Chem Central J 2008, 2:13.  相似文献   
3.

Background  

Considerable research has been directed towards the roles of metal ions in nutrition with metal ion toxicity attracting particular attention. The aim of this study is to measure the levels of metal ions found in selected beverages (red wine, stout and apple juice) and to determine their potential detrimental effects via calculation of the Target Hazard Quotients (THQ) for 250 mL daily consumption.  相似文献   
4.
5.
6.
Ordered magnetic nanowires have tremendous potential in future magnetic storage and high frequency magnetic logic devices. Here, we present the fabrication of ordered arrays of Cobalt nanowires by electrodeposition through porous polycarbonate membranes. Vertically and horizontally aligned nanowires were produced in presence of an external bias field during post deposition etching of the polycarbonate membrane. Structural and compositional analyses have been carried out to establish the material and structural purity. The magneto-optical Kerr effect was employed to measure the magnetic hysteresis loops for the nanowires assembled in the substrate plane. A good magneto-optical signal to noise ratio is observed with clean ferromagnetic hysteresis loops. The loops measured with external magnetic field applied parallel and perpendicular to the axis of the nanowires show a clear difference in the shape and the coercive field, indicating the effect of shape anisotropy in these samples. Micromagnetic simulations were performed to understand the experimental results and to obtain insight to the magnetization reversal mechanism in magnetic nanowires.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号